Modeling and Analysis for Surface roughness in Machining EN-31 steel using Response Surface Methodology
نویسندگان
چکیده
This paper utilizes the regression modeling in turning process of En-31 steel using response surface methodology (RSM) with factorial design of experiments. A first-order and second-order surface roughness predicting models were developed by using the experimental data and analysis of the relationship between the cutting conditions and response (surface roughness). In the development of predictive models, cutting parameters of cutting velocity, feed rate, depth of cut, tool nose radius and concentration of lubricants were considered as model variables, surface roughness were considered as response variable. Further, the analysis of variance (ANOVA) was used to analyze the influence of process parameters and their interaction during machining. From the analysis, it is observed that feed rate is the most significant factor on the surface roughness followed by cutting speed and depth of cut at 95% confidence level. Tool nose radius and concentration of lubricants seem to be statistically less significant at 95% confidence level. Furthermore, the interaction of cutting velocity/feed rate, cutting velocity/ nose radius and depth of cut/nose radius were found to be statistically significant on the surface finish because their p-values are smaller than 5%. The predicted surface roughness values of the samples have been found to lie close to that of the experimentally observed values.
منابع مشابه
Experimental Study & Modeling of Surface Roughness in Turning of Hardened AISI 4340 Steel Using Coated Carbide Inserted
Turning of hardened steels using a single point cutting tool has replaced the cylindrical grinding now as it offers attractive benefits in terms of lower equipment costs, shorter set up time, fewer process setups, higher material removal rate, better surface quality and elimination of cutting fluids compared to cylindrical grinding. In order to obtain desired surface quality by machining, pr...
متن کاملExperimental Investigation of Surface Roughness and Kerf Width During Machining of Blanking Die Material on Wire Electric Discharge Machine
Wire electric discharge machine (WEDM) is spark erosion in unconventional machining technique to cut hard and the conductive material with a wire as an electrode. The blanking die material SKD 11 is a high carbon and high chromium tool steel with high hardness and high wearing resistance property. This tool steel has broad application in press tools and dies making industries. In this research ...
متن کاملOptimisation of wire-cut EDM process parameter by Grey-based response surface methodology
Wire electric discharge machining (WEDM) is one of the advanced machining processes. Response surface methodology coupled with Grey relation analysis method has been proposed and used to optimise the machining parameters of WEDM. A face centred cubic design is used for conducting experiments on high speed steel (HSS) M2 grade workpiece material. The regression model of significant factors such ...
متن کاملMathematical Modeling and Analysis of Spark Erosion Machining Parameters of Hastelloy C-276 Using Multiple Regression Analysis (RESEARCH NOTE)
Electrical discharge machining has the capability of machining complicated shapes in electrically conductive materials independent of hardness of the work materials. This present article details the development of multiple regression models for envisaging the material removal rate and roughness of machined surface in electrical discharge machining of Hastelloy C276. The experimental runs are de...
متن کاملSurface Roughness, Machining Force and FlankWear in Turning of Hardened AISI 4340 Steel with Coated Carbide Insert: Cutting Parameters Effects
The current experimental study is to investigate the effects of process parameters (cutting speed, feed rate and depth of cut) on performance characteristics (surface roughness, machining force and flank wear) in hard turning of AISI 4340 steel with multilayer CVD (TiN/TiCN/Al2O3) coated carbide insert. Combined effects of cutting parameter (v, f, d) on performance outputs (Ra, Fm and VB) ar...
متن کامل